Local linear convergence analysis of Primal–Dual splitting methods
نویسندگان
چکیده
منابع مشابه
Local Linear Convergence Analysis of Primal–Dual Splitting Methods
In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these Primal–Dual splitting methods....
متن کاملConvergence Properties of Hermitian and Skew Hermitian Splitting Methods
In this paper we consider the solutions of linear systems of saddle point problems. By using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method.
متن کاملConvergence Analysis for Operator Splitting Methods
We analyze the order of convergence for operator splitting methods applied to conservation laws with stii source terms. We suppose that the source term q(u) is dissipative. It is proved that the L 1 error introduced by the time-splitting can be bounded by O((tkq(u 0)k L 1 (R)), which is an improvement of the O(Qt) upper bound, where t is the splitting time step, Q is the Lipschitz constant of q...
متن کاملTight Global Linear Convergence Rate Bounds for Operator Splitting Methods
In this paper we establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regard...
متن کاملconvergence properties of hermitian and skew hermitian splitting methods
in this paper we consider the solutions of linear systems of saddle point problems. by using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the hermitian and skew hermitian splitting method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization
سال: 2018
ISSN: 0233-1934,1029-4945
DOI: 10.1080/02331934.2018.1426584